

www.GotBigWater.com

2-1/2" Discharge Flow Test

Evaluating the Flow Capacity of 5" LDH Used on a 2-1/2" Discharge

Seneca County, New York April 5, 2009

Overview

- On April 4th and 5th, 2009, the Seneca County, New York, Office of Emergency Services held a Rural Water Supply Operations Seminar and Drill presented by GBW Associates, LLC of Westminster, Maryland.
- During the tanker shuttle drill on Sunday the 5th, some discussion arose involving the flow capacity of 2-1/2inch discharges on centrifugal fire pumps.
- The specific inquiry involved the use of 5-inch hose on a 2-1/2-inch discharge and the amount of water that could be move through that hose.
- Ovid FD Engine 1104 (1,250 gpm) was used to conduct a flow test involving the capability of a 2-1/2-inch discharge when using 5-inch hose.

The Pumper

- Ovid Engine 1104
 - 1984 Saulsbury/Ford chassis
 - Hale 1,250 gpm single-stage pump
 - One, 6-inch suction intake connection.
 - Carries 6-inch suction hose.

The Problem

- Traditional 2-1/2-inch discharges are generally limited in their flow to only a percentage of the fire pump's rated capacity.
- Just because a 2-1/2" x 5" adaptor can allow 5-inch LDH to be connected to a pump's 2-1/2" discharge, this does not mean that a high flow rate will be obtained as would be expected with LDH.

The Hypothesis

 A single, 2-1/2-inch discharge cannot flow the rated capacity of the pump even when pumping into a 5-inch LDH line.

The Test Set-up

- Engine 1104 (1,250 gpm) was connected to a 6-inch dry fire hydrant using 16-feet of 6-inch suction hose.
- The dry fire hydrant had been used previously in the day for filling tankers in the 2-hour water shuttle exercise – so the hydrant was confirmed operational and unobstructed.
- Lift was less than 10-feet thus allowing the pump to develop full capacity if possible.
- Two flow tests were run using two different hose set-ups.

The Test Set-up: Flow Test #1

- A portable master stream device outfitted with a 2inch tip was supplied by a 100-ft section of 5-inch LDH which was connected to one of Engine 1104's 2-1/2-inch discharges.
- Flow was measured using a pitot tube at the 2-inch tip.

The Test Set-up: Flow Test #2

- A portable master stream device outfitted with a 2-inch tip was supplied by a 100-ft section of 5-inch LDH which was then supplied by two, short sections of 3-inch hose using a clappered siamese.
- The two, 3-inch lines were connected to two of Engine 1104's 2-1/2-inch discharges.
- Flow was measured using a pitot tube at the 2-inch tip.

Establishing Constants

- In order to collect comparable data, a few constants had to be established.
 - The same suction hose setup was used each time.
 - The vehicle's transmission remained in the same gear each time.
 - No other devices were used to flow water while the portable monitor was flowing.
 - Each test was stopped when there was "no more throttle" available.

Test Results: Flow Test #1

Master Discharge Gauge Reading	Nozzle Pitot Reading	Flow
80 psi	40 psi	751 gpm
100 psi	50 psi	840 gpm
105 psi	54 psi	873 gpm
125 psi	64 psi	950 gpm

Single, 5-inch LDH hose, 100-ft in length supplied by a single, 2-1/2-inch discharge.

Test Results: Flow Test #2

Master Discharge Gauge Reading	Nozzle Pitot Reading	Flow
80 psi	50 psi	840 gpm
100 psi	62 psi	935 gpm
105 psi	66 psi	965 gpm
125 psi	74 psi	1022 gpm

Single, 5-inch LDH hose, 100-ft in length supplied by two, 2-1/2-inch discharges.

Summary

- It was demonstrated that a single, 2-1/2-inch discharge could not supply 1000 gpm to a 5-inch LDH.
- However, when two, 2-1/2-inch discharges were used, the 1,000 gpm goal was reached.
- The results of this simple demonstration are important to remember because it is easy to connect a 5-inch line to any discharge – however, we have to remember that unless that discharge is designed for high flows – that discharge most likely will be limited in its flow capacity.
- Kind of like putting a 2-1/2" fog nozzle on a ¾" booster line – you are still limited in flow.

www.GotBigWater.com

This program was developed by GBW Associates, LLC © 2009

No part may be used or copied without expressed written consent.

For more information contact us at info@gotbigwater.com